310 research outputs found

    Observation of shell structure in sodium nanowires

    Full text link
    The quantum states of a system of particles in a finite spatial domain in general consist of a set of discrete energy eigenvalues; these are usually grouped into bunches of degenerate or close-lying levels, called shells. In fermionic systems, this gives rise to a local minimum in the total energy when all the states of a given shell are occupied. In particular, the closed-shell electronic configuration of the noble gases produces their exceptional stability. Shell effects have previously been observed for protons and neutrons in nuclei and for clusters of metal atoms. Here we report the observation of shell effects in an open system - a sodium metal nanowire connecting two bulk sodium metal electrodes, which are progressively pulled apart. We measure oscillations in the statistical distribution of conductance values, for contact cross-sections containing up to a hundred atoms or more. The period follows the law expected from shell-closure effects, similar to the abundance peaks at `magic numbers' of atoms in metal clusters.Comment: The argumentation in favour of shell structure owing to the fluctuations in the free energy of the nanowires has been strengthened. Further improvements in the presentation include the plot of the radius of the wires versus shell number in Fig.

    Atomic size oscillations in conductance histograms for gold nanowires and the influence of work hardening

    Get PDF
    Nanowires of different nature have been shown to self-assemble as a function of stress at the contact between two macroscopic metallic leads. Here we demonstrate for gold wires that the balance between various metastable nanowire configurations is influenced by the microstructure of the starting materials and we discover a new set of periodic structures, which we interpret as due to the atomic discreteness of the contact size for the three principal crystal orientations.Comment: This version corrects an error in attributing the three observed periods, and includes a comparison with recent model calculation

    Crossover from Electronic to Atomic Shell Structure in Alkali Metal Nanowires

    Full text link
    After making a cold weld by pressing two clean metal surfaces together, upon gradually separating the two pieces a metallic nanowire is formed, which progressively thins down to a single atom before contact is lost. In previous experiments [1,2] we have observed that the stability of such nanowires is influenced by electronic shell filling effects, in analogy to shell effects in metal clusters [3]. For sodium and potassium at larger diameters there is a crossover to crystalline wires with shell-closings corresponding to the completion of additional atomic layers. This observation completes the analogy between shell effects observed for clusters and nanowires.Comment: 4 page

    Directional photoelectric current across the bilayer graphene junction

    Full text link
    A directional photon-assisted resonant chiral tunneling through a bilayer graphene barrier is considered. An external electromagnetic field applied to the barrier switches the transparency TT in the longitudinal direction from its steady state value T=0 to the ideal T=1 at no energy costs. The switch happens because the a.c. field affects the phase correlation between the electrons and holes inside the graphene barrier changing the whole angular dependence of the chiral tunneling (directional photoelectric effect). The suggested phenomena can be implemented in relevant experiments and in various sub-millimeter and far-infrared optical electronic devices.Comment: 7 pages 5 figure

    Effect of disorder on the conductance of a Cu atomic point contact

    Get PDF
    We present a systematic study of the effect of the disorder in copper point contacts. We show that peaks in the conductance histogram of copper point contacts shift upon addition of nickel impurities. The shift increases initially linerarly with the nickel concentration, thus confirming that it is due to disorder in the nanowire, in accordance with predictions. In general, this shift is modelled as a resistance R_s which is placed in series with the contact resistance R_c. However, we obtain different R_s values for the two peaks in the histogram, R_s being larger for the peak at higher conductance.Comment: 6 pages, 4 figure

    Onset of dissipation in ballistic atomic wires

    Get PDF
    Electronic transport at finite voltages in free-standing gold atomic chains of up to 7 atoms in length is studied at low temperatures using a scanning tunneling microscope (STM). The conductance vs voltage curves show that transport in these single-mode ballistic atomic wires is non-dissipative up to a finite voltage threshold of the order of several mV. The onset of dissipation and resistance within the wire corresponds to the excitation of the atomic vibrations by the electrons traversing the wire and is very sensitive to strain.Comment: Revtex4, 4 pages, 3 fig

    Andreev experiments on superconductor/ferromagnet point contacts

    Get PDF
    Andreev reflection is a smart tool to investigate the spin polarisation P of the current through point contacts between a superconductor and a ferromagnet. We compare different models to extract P from experimental data and investigate the dependence of P on different contact parameters.Comment: 14 pages, 5 figures, accepted for publication in Fizika Nizkikh Temperatu

    Radiation Due to Josephson Oscillations in Layered Superconductors

    Full text link
    We derive the power of direct radiation into free space induced by Josephson oscillations in intrinsic Josephson junctions of highly anisotropic layered superconductors. We consider the super-radiation regime for a crystal cut in the form of a thin slice parallel to the c-axis. We find that the radiation correction to the current-voltage characteristic in this regime depends only on crystal shape. We show that at large enough number of junctions oscillations are synchronized providing high radiation power and efficiency in the THz frequency range. We discuss crystal parameters and bias current optimal for radiation power and crystal cooling.Comment: 4 pages, 1 figure, to be published in Phys. Rev. Let
    corecore